Functions and algebra: Use a variety of techniques to sketch and interpret information from graphs of functions

Subject outcome

Subject outcome 2.1: Use a variety of techniques to sketch and interpret information from graphs of functions

Learning outcomes

  • Use a variety of techniques to sketch and interpret information from graphs of functions. (Sketching of graphs using point by point plotting is an option.)
    • [latex]\scriptsize \displaystyle y=a{{(x+p)}^{2}}+q[/latex]
    • [latex]\scriptsize y=a{{x}^{2}}+bx+c[/latex]
    • [latex]\scriptsize y=\displaystyle \frac{a}{{x+p}}+q[/latex]
    • [latex]\scriptsize y=a.{{b}^{{x+p}}}+q,b>0[/latex]
    • [latex]\scriptsize y=a\sin kx[/latex]
    • [latex]\scriptsize y=a\cos kx[/latex]
    • [latex]\scriptsize y=a\tan kx[/latex]
    • [latex]\scriptsize y=a\sin (x+p)[/latex]
    • [latex]\scriptsize y=a\cos (x+p)[/latex]
    • [latex]\scriptsize y=a\tan (x+p)[/latex]
      Note: Cubic functions will only be done in differential Calculus in level 4.
  • Investigate and generalize the impact of[latex]\scriptsize k,p,a,b,c[/latex] and [latex]\scriptsize q[/latex] on the functions listed above.
  • Identify the following characteristics of functions:
    • Domain and range
    • Intercepts with axes
    • Turning points, minima and maxima
    • Asymptotes
    • Shape and symmetry
    • Periodicity and amplitude
    • Functions or non-functions
    • Continuous or discontinuous
    • Intervals in which a function increases/decreases.
  • Find the equation of the graphs by calculations or using the method of inspection (investigating the transformation of the graph).

Unit 1 outcomes

By the end of this unit you will be able to:

  • Sketch quadratic functions of the form [latex]\scriptsize y=a{{x}^{2}}+bx+c[/latex] and [latex]\scriptsize \displaystyle y=a{{(x+p)}^{2}}+q[/latex].
  • Find the turning point of [latex]\scriptsize y=a{{x}^{2}}+bx+c[/latex] and [latex]\scriptsize \displaystyle y=a{{(x+p)}^{2}}+q[/latex].

Unit 2 outcomes

By the end of this unit you will be able to:

  • Find the equation of a quadratic function when given the x-intercepts and another point on the graph.
  • Find the equation of a quadratic function when given the turning point and another point on the graph.

Unit 3 outcomes

By the end of this unit you will be able to:

  • Determine the domain and range of hyperbolic functions of the form [latex]\scriptsize y=\displaystyle \frac{a}{{(x+p)}}+q[/latex].
  • Find the asymptotes of hyperbolic functions of the form [latex]\scriptsize y=\displaystyle \frac{a}{{(x+p)}}+q[/latex].
  • Find the axes of symmetry of hyperbolic functions of the form [latex]\scriptsize y=\displaystyle \frac{a}{{(x+p)}}+q[/latex].
  • Find the intercepts with the axes of hyperbolic functions of the form [latex]\scriptsize y=\displaystyle \frac{a}{{(x+p)}}+q[/latex].
  • Sketch hyperbolic functions of the form [latex]\scriptsize y=\displaystyle \frac{a}{{(x+p)}}+q[/latex].

Unit 4 outcomes

By the end of this unit you will be able to:

  • Find the equation of a hyperbola in the form [latex]\scriptsize y=\displaystyle \frac{a}{{x+p}}+q[/latex].

Unit 5 outcomes

By the end of this unit you will be able to:

  • Determine the domain and range of exponential functions of the form [latex]\scriptsize y=a.{{b}^{{x+p}}}+q,b>0[/latex].
  • Find the asymptote of exponential functions of the form [latex]\scriptsize y=a.{{b}^{{x+p}}}+q,b>0[/latex].
  • Find the intercepts with the axes of exponential functions of the form [latex]\scriptsize y=a.{{b}^{{x+p}}}+q,b>0[/latex].
  • Sketch exponential functions of the form [latex]\scriptsize y=a.{{b}^{{x+p}}}+q,b>0[/latex].

Unit 6 outcomes

By the end of this unit you will be able to:

  • Find the equation of exponential graphs in the form [latex]\scriptsize y=a.{{b}^{{x+p}}}+q,\text{ }b>0[/latex].
  • Analyse exponential functions.

Unit 7 outcomes

By the end of this unit you will be able to:

  • Sketch functions of the form [latex]\scriptsize y=a\sin k\theta[/latex].
  • Determine the effects of [latex]\scriptsize a[/latex] and [latex]\scriptsize k[/latex] on the sine graph of the form [latex]\scriptsize y=a\sin k\theta[/latex].
  • Find the values of [latex]\scriptsize a[/latex] and [latex]\scriptsize k[/latex] from a given sine graph of the form [latex]\scriptsize y=a\sin k\theta[/latex].

Remember that the domain of trigonometric functions can be represented as [latex]\scriptsize x[/latex] or [latex]\scriptsize \theta[/latex]. Therefore, [latex]\scriptsize y=\sin x[/latex] and [latex]\scriptsize y=\sin \theta[/latex] are the same function.

Unit 8 outcomes

By the end of this unit you will be able to:

  • Sketch functions of the form [latex]\scriptsize y=\sin (\theta +p)[/latex].
  • Determine the effects of positive and negative values of [latex]\scriptsize p[/latex] on the sine graph [latex]\scriptsize y=\sin (\theta +p)[/latex].
  • Find the value of [latex]\scriptsize p[/latex] from a given sine graph of the form [latex]\scriptsize y=\sin (\theta +p)[/latex].

 

Remember that the domain of trigonometric functions can be represented as [latex]\scriptsize x[/latex] or [latex]\scriptsize \theta[/latex]. Therefore, [latex]\scriptsize y=\sin x[/latex] and [latex]\scriptsize y=\sin \theta[/latex] are the same function.

Unit 9 outcomes

By the end of this unit you will be able to:

  • Sketch functions of the form [latex]\scriptsize y=a\cos k\theta[/latex].
  • Determine the effects of [latex]\scriptsize a[/latex] and [latex]\scriptsize k[/latex] on the cosine graph of the form [latex]\scriptsize y=a\cos k\theta[/latex].
  • Find the values of [latex]\scriptsize a[/latex] and [latex]\scriptsize k[/latex] from a given cosine graph of the form [latex]\scriptsize y=a\cos k\theta[/latex].

Remember that the domain of trigonometric functions can be represented as [latex]\scriptsize x[/latex] or [latex]\scriptsize \theta[/latex]. Therefore, [latex]\scriptsize y=\cos x[/latex] and [latex]\scriptsize y=\cos \theta[/latex] are the same function.

Unit 10 outcomes

By the end of this unit you will be able to:

  • Sketch functions of the form [latex]\scriptsize y=\cos (\theta +p)[/latex].
  • Determine the effects of positive and negative values of [latex]\scriptsize p[/latex] on the cosine graph [latex]\scriptsize y=\cos (\theta +p)[/latex].
  • Find the value of [latex]\scriptsize p[/latex] from a given cosine graph of the form [latex]\scriptsize y=\cos (\theta +p)[/latex].

Remember that the domain of trigonometric functions can be represented as [latex]\scriptsize x[/latex] or [latex]\scriptsize \theta[/latex]. Therefore, [latex]\scriptsize y=\cos x[/latex] and [latex]\scriptsize y=\cos \theta[/latex] are the same function.

Unit 11 outcomes

By the end of this unit you will be able to:

  • Sketch functions of the form [latex]\scriptsize y=a\tan k\theta[/latex].
  • Determine the effects of [latex]\scriptsize a[/latex] and [latex]\scriptsize k[/latex] on the tangent graph of the form [latex]\scriptsize y=a\tan k\theta[/latex].
  • Find the values of [latex]\scriptsize a[/latex] and [latex]\scriptsize k[/latex] from a given tangent graph of the form [latex]\scriptsize y=a\tan k\theta[/latex].

Remember that the domain of trigonometric functions can be represented as [latex]\scriptsize x[/latex] or [latex]\scriptsize \theta[/latex]. Therefore, [latex]\scriptsize y=\tan x[/latex] and [latex]\scriptsize y=\tan \theta[/latex] are the same function.

Unit 12 outcomes

By the end of this unit you will be able to:

  • Sketch functions of the form [latex]\scriptsize y=\tan (\theta +p)[/latex].
  • Determine the effects of positive and negative values of [latex]\scriptsize p[/latex] on the tangent graph [latex]\scriptsize y=\tan (\theta +p)[/latex].
  • Find the value of [latex]\scriptsize p[/latex] from a given tangent graph of the form [latex]\scriptsize y=\tan (\theta +p)[/latex].

Remember that the domain of trigonometric functions can be represented as [latex]\scriptsize x[/latex] or [latex]\scriptsize \theta[/latex]. Therefore, [latex]\scriptsize y=\tan x[/latex] and [latex]\scriptsize y=\tan \theta[/latex] are the same function.

License

Icon for the Creative Commons Attribution 4.0 International License

National Curriculum (Vocational) Mathematics Level 3 by Department of Higher Education and Training is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.

Share This Book