Financial mathematics: Use simple and compound interest to explain and define a variety of situations
Unit 1: Calculations involving simple interest
Gill Scott

Unit outcomes
By the end of this unit you will be able to:
- Use the simple growth formula to solve problems related to finance.
- Solve for A,P,i and n using the simple interest formula.
What you should know
Before you start this unit, make sure that you can:
- Use a scientific calculator. Look back to level 2 subject outcome 1.1 to revise this.
- Use basic laws of arithmetic.
- Solve simple equations. Level 2 subject outcome 2.2 unit 1 will provide help with these.
- Complete basic simple interest calculations. Refer to level 2 subject outcome 5.2 unit 1 for help with this.
Introduction
Simple and compound growth formulae are used most commonly when talking about financial loans and investments. Growth is calculated as ‘interest’ on an amount that is invested or borrowed for a period of time. In this unit we will look at simple interest and how it is calculated.
Calculating simple interest
The elements of the simple interest/growth formula are as follows:
If you multiply out the brackets in this formula, you see that the accumulated amount is made up of the sum of the principal – the original amount that is borrowed or invested – and the increase (by the given percentage) of the principal over the specified number of years:
A=P+P.i.n
Let’s look at a few examples of how to use this simple interest formula.

Example 1.1
A TV costs R4 500 on a hire purchase loan agreement. The interest charged is 12% simple interest each year (per annum, or ‘p.a.’) based on the full purchase price of the TV. Portia repays the loan over three years.
- Calculate the full amount of money paid for the TV.
- Calculate how much must be paid each month if equal payments are made every month.
Solution
It is a good idea to list all the information given, and to identify what variable must be calculated.
P=4 500i=12%n=3A=?
The interest is always a percentage. You can express this as a fraction over 100, or substitute the decimal value right away: 12%=12100=0.12
- .
A=P(1+i.n)=4 500[1+(12100)(3)]=4 500[1+0.36]=4 500(1.36)=6 120
A total of R6 120 is paid over the period of three years or 36 months. - Each monthly payment should be 6 12036=R170

Example 1.2
Pumla borrows R150 000 to start a business and repays the loan in one lump sum after five years. The total amount that she is required to pay is R243 750. If the interest charged on the loan was simple interest, calculate the annual interest rate.
Solution
List all the information given and identify what variable must be calculated:
P=150 000A=243 750n=5i=?
Therefore:
A=P(1+i.n)AP=1+i.nAP−1=i.n1n(AP−1)=ii=15(243 750150 000−1)=15(1.625−1)=15(0.625)=0.125 or 12.5

Example 1.3
A cell phone is advertised for R280 per month on hire purchase over a period of three years. If the simple interest rate charged is 33.9%, calculate the original cash price of the phone. What would the buyer save by buying the phone for cash rather than on hire purchase?
Solution
List all the information given and identify what variable must be calculated:
n=3 yearsi=33.9%A=280×(3×12)=10 080P=?
Therefore:
A=P(1+i.n)A1+i.n=PP=10 0801+(33.9100)3=10 0801+(0.339×3)=10 0801+1.017=10 0802.017=4 997.52
The cash price for the phone is R4 997.52.
The buyer would save 10 080−4 997.52=R5 082.48 by paying cash rather than buying on hire purchase.

Example 1.4
How long will it take for an investment of R7 500 to amount to R10 125 at 3.5% simple interest per annum?
Solution
List all the information given and identify what variable must be calculated:
P=7 500A=10 125i=3.5%=3.5100=0.035n=?
Therefore:
A=P(1+i.n)AP=1+i.nAP−1=i.n1i(AP−1)=nn=10.035(10 1257 500−1)=10.035(1.35−1)=10.035(0.35)=10
It will take 10 years.

Exercise 1.1
Note: Save your calculations and answers from this exercise to compare with your work in unit 2 in this subject outcome.
- R3 750 is invested in a savings account at 3.2% simple interest per annum. What is the total value of the investment after a period of four years?
- A loan of R30 000 is offered, to be paid off over a period of two years. By the time the debt is paid off, Karabo has paid a total of R9 000 in interest. What is the rate of simple interest that was charged on the loan?
- A laptop is advertised for R299 per month on hire purchase over a period of three years. If the simple interest rate charged is 35%, calculate the original cash price of the laptop. How much would the buyer save by buying the laptop for cash rather than on hire purchase?
- Calculate how long it would take to generate an amount of R1 050 in interest from an investment of R5 000, at 3.5%simple interest per annum.
The full solutions are at the end of the unit.
Note
When you get to unit 2 of this subject outcome, you might wonder if there are any real-life applications of simple interest. The SA Shares website explains that simple interest applies to loans for the purchase of vehicles:
“Vehicle loans are amortised (gradually written off over a period) monthly, meaning that part of the monthly instalment is allocated to pay the outstanding monthly balance of the loan, and the remainder covers the interest payment. As the outstanding balance declines, the monthly interest payable reduces. There is no compounding effect on the interest itself, as it is always considered as paid in full for the specific month.”
In the level 4 topic on Financial Mathematics, you will work with examples of this type, where simple and compound interest relate to reducing balances, rather than growth and increasing balances.
Summary
In this unit you have learnt the following:
- How to use the simple growth formula to solve problems related to finance.
- How to solve for A, P, i and n using the simple interest formula.
Suggested time to complete: 20 minutes
- A laptop is advertised for R469 per month over a period of three years on hire purchase. If the rate of simple interest charged is 22.95%, calculate the original cash price of the laptop. Calculate the amount saved by buying for cash rather than on hire purchase.
- After a period of 20 years, an investment of R12 750 has a total value of R23 205. Calculate the rate of simple interest that was paid on this investment.
- A new fridge is advertised for R262 per month over a period of two years. If the simple interest charged is 45.3% per annum, calculate the cash price of the fridge.
- Calculate the time it will take R8 000 to amount to R8 960 at 4% simple interest per annum.
The full solutions are at the end of the unit.
Exercise 1.1
- .
P=R3 750
i=3.2%
n=4
A=?
.
A=P(1+i.n)=3750[1+3.2100(4)]=3750[1+(0.032)(4)]=3750[1+0.128]=3750[1.128]=4230
The total value of the investment after the period of four years is R4 230. - .
P=30 000
n=2
A=30 000+9 000=39 000
i=?
.
A=P(1+i.n)AP=1+i.nAP−1=i.n1n(AP−1)=ii=12(3900030000−1)=12(1.3−1)=12(0.3)=0.15 or 15%
The rate of simple interest charged was 15% . - .
n=3 years = 36 monthsi=35%A=299×36=10764
.
A=P(1+i.n)A(1+i.n)=PP=10 7641+(35100)(3)=10 7641+(0.35)(3)=10 7641+1.05=10 7642.05=5 250.732
The original cash price of the laptop is R5 250.73.
Buying for cash rather than hire purchase would save 10 764−5 250.73=R5 513.27. - .
P=5 000A=1 050+5 000=6 050I=3.5%=3.5100=0.035
.
A=P(1+i.n)AP=1+i.nAP−1=i.n1i(AP−1)=nn=10.035(6 0505 000−1)=10.035(1.21−1)7=10.035(0.21)=6
It would take six years.
Unit 1: Assessment
- .
n=3 years=36 monthsA=469×36=16 884i=22.95%P=?
.
A=P(1+i.n)A1+i.n=PP=16 8841+(22.95100)(3)=16 8841+(0.2295)(3)=16 8841+0.6885=16 8841.6885=9 999.408
The cash price of the laptop is R9 999.41.
The amount saved by buying for cash rather than on hire purchase would be 16884−9999.41=R6884.59 - .
A=23 205P=12 750n=20i=?
.
A=P(1+i.n)AP=1+i.nAP−1=i.n1n(AP−1)=ii=120(23 20512 750−1)=120(1.82−1)=120(0.82)=0.041 or 4.1 % p.a.
The rate of simple interest paid was 4.1% per annum. - .
i=45.3%n=2 years = 24 monthsA=262×24=6 288
.
A=P(1+i.n)A(1+i.n)=PP=6 2881+(45.3100)(2)=6 2881+(0.453)(2)=6 2881+0.906=6 2881.906=3 299.056
The cash price of the fridge is R3 299.06 - .
P=8 000A=8 960i=4%=4100=0.04
.
A=P(1+i.n)AP=1+i.nAP−1=i.n1i(AP−1)=nn=10.04(8 9608 000−1)=10.04(1.12−1)=10.04(0.12)=3
It will take three years.
Media Attributions
- M3 SO5.2 Unit1 Image1 Simple interest formula © DHET is licensed under a CC BY (Attribution) license