Space, shape and measurement: Solve problems by constructing and interpreting trigonometric models
Subject outcome
Subject outcome 3.3: Solve problems by constructing and interpreting trigonometric models
Learning outcomes
- Derive and use the values of the trigonometric functions (in surd form where applicable) of [latex]\scriptsize {{30}^\circ}[/latex], [latex]\scriptsize {{45}^\circ}[/latex] and [latex]\scriptsize {{60}^\circ}[/latex].
- Use the reduction formulae and special angles to solve trigonometric expressions and prove equations in all four quadrants (without the use of a calculator) for the following functions:
- [latex]\scriptsize \sin ({{90}^\circ}\pm \theta )[/latex]; [latex]\scriptsize \cos ({{90}^\circ}\pm \theta )[/latex]
- [latex]\scriptsize \sin ({{180}^\circ}\pm \theta )[/latex]; [latex]\scriptsize \cos ({{180}^\circ}\pm \theta )[/latex]; [latex]\scriptsize \tan ({{180}^\circ}\pm \theta )[/latex]
- [latex]\scriptsize \sin ({{360}^\circ}\pm \theta )[/latex]; [latex]\scriptsize \cos ({{360}^\circ}\pm \theta )[/latex]; [latex]\scriptsize \tan ({{360}^\circ}\pm \theta )[/latex]
- Use the following trigonometric identities to simplify expressions and prove equations:
- [latex]\scriptsize \tan \theta =\displaystyle \frac{{\sin \theta }}{{\cos \theta }}[/latex]
- [latex]\scriptsize {{\sin }^{2}}\theta +co{{s}^{2}}\theta =1[/latex]
- Solve trigonometric equations (with the use of a calculator) involving reduction formulae using special triangles for the three trigonometric functions in all four quadrants.
- [latex]\scriptsize \sin ({{90}^\circ}\pm \theta )[/latex]; [latex]\scriptsize \cos ({{90}^\circ}\pm \theta )[/latex]
- [latex]\scriptsize \sin ({{180}^\circ}\pm \theta )[/latex]; [latex]\scriptsize \cos ({{180}^\circ}\pm \theta )[/latex]; [latex]\scriptsize \tan ({{180}^\circ}\pm \theta )[/latex]
- [latex]\scriptsize \sin ({{360}^\circ}\pm \theta )[/latex]; [latex]\scriptsize \cos ({{360}^\circ}\pm \theta )[/latex]; [latex]\scriptsize \tan ({{360}^\circ}\pm \theta )[/latex]
- Apply the sine, cosine and area rules.
- Solve problems in two dimensions by using the sine, cosine and area rules by interpreting given geometric and trigonometric models.
Unit 1 outcomes
By the end of this unit you will be able to:
- Simplify trigonometric ratios involving the angles [latex]\scriptsize {{30}^\circ}[/latex], [latex]\scriptsize {{45}^\circ}[/latex] and [latex]\scriptsize {{60}^\circ}[/latex].
Unit 2 outcomes
By the end of this unit you will be able to:
- Apply reduction formulae for function values of [latex]\scriptsize ({{90}^\circ}\pm \theta )[/latex].
- Apply reduction formulae for function values of [latex]\scriptsize ({{180}^\circ}\pm \theta )[/latex].
- Apply reduction formulae for function values of [latex]\scriptsize ({{360}^\circ}\pm \theta )[/latex].
- Simplify trigonometric ratios involving any combination of reduction formulae.
Unit 3 outcomes
By the end of this unit you will be able to:
- Use the quotient identity [latex]\scriptsize \tan \theta =\displaystyle \frac{{\sin \theta }}{{\cos \theta }}[/latex] to prove equations and simplify expressions.
- Use the square identity [latex]\scriptsize {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1[/latex] to prove equations and simplify expressions.
Unit 4 outcomes
By the end of this unit you will be able to:
- Solve trigonometric equations using a general solution.
Unit 5 outcomes
By the end of this unit you will be able to:
- Apply the area rule in 2-D triangles.
Unit 6 outcomes
By the end of this unit you will be able to:
- Use the sine rule to find an unknown length of a triangle.
- Use the sine rule to find an unknown angle of a triangle.
Unit 7 outcomes
By the end of this unit you will be able to:
- Use the cosine rule to find the length of an unknown side of a triangle.
- Use the cosine rule to find an unknown angle of a triangle.
Unit 8 outcomes
By the end of this unit you will be able to:
- Solve real problems by applying the area, sine and cosine rules.